Google est sous le coup d'un procès antitrust aux Etats Unis. Ce procès est l'occasion de revoir des brevets et des fuites de documents encore inconnus sur le fonctionnement de l'algorithme de Google. Ce qui fait le bonheur des experts SEO autour du globe. Parcourons ensemble les principaux facteurs de référencements dévoilés dans cette procédure.
Nous allons utiliser pour cet article les informations dévoilées dans le témoignage du vice président d'alphabet (Pandu Nayak) ainsi que le rapport d'Edward A. Fox démenti par le professeur Douglas W Oard, sur limpact des données utilisateurs sur le ranking. Nous ajouterons bien sur la 410 Touch' dans l'interprétation de ces éléments ainsi que nos conseils pour bien exploiter ces informations.
L'objectif de cet article est vraiment d'exploiter cette rare occasion de se baser sur du concret pour prodiguer des conseils SEO alors que d'habitude, seul le reverse engeenering permet de tirer des conclusions dont la précision peut varier.
Les premiers éléments de l'algorithme que nous allons analyser sont Navboost et RankBrain qui sont là pour aider Google à valider qu'il a présenté les bons résultats à l'internaute et éventuellement ajuster sa réponse en fonction des feedbacks utilisateurs ainsi recueillis.
C'est ici une pré-version de RankBrain que nous décrirons plus loin. Cet algorithme mesure sur quels résultats les internautes cliquent dans une page de résultat sur une requête donnée.
C'est en quelque sorte le vote de satisfaction des utilisateurs face à la réponse proposée par Google. Si un résultat est plus souvent choisi / cliqué qu'un résultat mieux classé, c'est sans doute qu'il faut changer l'ordre.
On peut donc en déduire l'impact du CTR sur le ranking, et de facto : l'importance de la balise title pour donner envie de cliquer. Idem pour la meta description (qui n'a qu'un impact CTR et pas un impact sémantique), l'importance des données structurées si le résultat y est éligible, des images en carrousel ou non, bref tout ce qui vient enrichir visuellement et peut donner envie de cliquer.
À noter que Google avait tenté de retirer cet algorithme et avait constaté une baisse de qualité.
En résumé sur Navboost :
En résumé, RankBrain est la version IA de Navboost. La partie analyse du comportement des Internautes face à un résultat donné est toujours présente, mais on y ajoute une meilleure compréhension de l'intention de recherche; plus particulièrement sur les requêtes ambiguës ou complexes. C'est ici que se décidera si une requête est vue comme commerciale ou informationnelle par exemple.
Rankbrain a lui été lancé en 2015, ce qui est cohérent avec les premiers déploiement du Deep Learning à grande échelle, il travaille en revanche sur des données plus fraiches que Navboost, ce qui en améliore la précision, mais peut également engendrer de la volatilité, que ce soit en termes de ranking ou de compréhension de l'évolution d'une intention de recherche.
En résumé sur RankBrain
Objectif principal: donner aux internautes envie de cliquer.
Attention : ces actions ne seront efficace qu'à partir de la 1ère page Google, avant il faut continuer de travailler sur les leviers historique (contenu, notoriété technique etc)
Cette seconde vague d'algorithme vise à mieux comprendre l'intention de recherche de l'Internaute. Cela passe par l'extraction des termes importants, mais aussi l'analyse de leur ordre.
QSBT veut dire: Query Based Salient Terms, ce qui signifie extraction de la partie de la plus importante d'une recherche. C'est en grossissant le trait, ce qui exclu les mots de liaisons et tout terme neutre dans une recherche. On retrouve ici encore une fois l'importance de la sémantique.
C'est une variante de QSBT, qui est entrainé uniquement sur les requêtes et pas les documents.
C'est la version la plus aboutie de la compréhension de l'intention de recherche et du contexte des requêtes. DeepRank est en fait le nom interne chez Google de BERT que vous avez probablement entendu ailleurs. BERT est pré entrainé avec une large base de documents et permet donc d'affiner la pertinence des résultats proposées sur une requête.
En résumé sur DeepRank :
Cette partie de l'agorithme sert à grouper les informations de Navboost et la compréhension avancées de l'intention par Bert. il est entrainé sur la base des pages web, des requêtes, des résultats de clicks, et l'évaluation humaine.
Mum est certains beaucoup plus puissant que Bert (on parle d'un facteur de 1 à 1000), il est aussi beaucoup plus couteux en ressources de part son aspect multimodal en termes de formats, de nombres de langues : 75.
Mum en résumé :
Objectif principal : gagner en précision face à l'intention de recherche des Internautes.
Une partie des algorithmes dévoilés concernent la gestion de l'affichage de la page de résultats. Nous allons ici décortiquer les différents composants pour mieux entrevoir les possibilités qui s'offre à nous pour travailler le référencement de nos sites web.
Tangram a pour objectif simple d'afficher les résultats dans une SERP sous différents formats, qu'il s'agisse de résultats classiques en termes d'affichage, de carrousel, de snippets etc. (NB: Tangram s'appelait Tetris avant.)
Dans ce cas, c'est tangram qui décide si tel ou tel snippets est pertinent dans une serp pour l'UX, si il doit y avoir une carte etc etc...
Glue quand lui a été lancé en 2013 et exploite les données de Navboost pour ajuster la position des snippets dans une page de résultats. (Peut-on en déduire que de nombreux clics sur un carrousel vidéo le fera remonter ?). Glue est utilisé tant dans les résultats que les knowledge graph, les PAA, et permet d'exploiter les données issus des différents types de résultats de recherche et des pérphériques utilisés.
On l'a vue avec RankBrain, Google a toujours une version de fond, et une version pour s'adapter rapidement. Ici ces deux algorithmes vont faire en sorte de valoriser si c'est pertinent la fraicheur des informations. C'est la partie qui correspond le plus aux données de type Google News. elle fait d'ailleurs écho au légendaire "boost de fraicheur" même hors google news.
Cet algorithme (FNT) va en résumé contrôle que les critères de ranking fournissent des réponses qui sont toujours cohérents avec les documents les plus récents. ils joueront donc un rôle sur la bascule d'une SERP en news vers de l'informationnel classique.
Instant Glue est lui basé sur les dernières 24h avec une latence de 10mn. On est donc dans un cadre d'application des résultats les plus récents en termes de critères de ranking et de signal utilisateurs.
Objectif principal : suivre l'intention de recherche dans le temps, mettre à jour le type de réponse et son contenu.
Il a été démontré grâce au témoignage contradictoire du professeur Douglas W. Oard que Google utilise effectivement des signaux utilisateurs pour affiner et pondéré les critères de ces algorithmes afin d'obtenir les meilleurs résultats possibles. Dans la suite de cet article, nous allons passer en revue ces différents critères d'évaluation.
L'IS score repose sur une évaluation humain des résultats de recherche. Les "évaluateurs" se voient présenter des résultats de recherche dans savoir si il s'agit de résultats issus de Bing ou de Google. Cette méthode pose question car bien que partant d'une bonne intention, on peut questionner son obsolescence face à des modèles comme MUM de plus en plus pertinents. En effet toute analyse humaine induit un nombre de biais conséquents. Ici le principal étant une surdose ou une absence de contexte : dans un cas l'humain peut surévaluer la pertinence d'un résultat à cause de la seule affinité qu'il a avec une marque, et dans un autre ignorer la pertinence d'une réponse faute de maitrise technique du sujet.
Parmi les autres biais, on notera les points suivants :
On peut ici supposer que la sortie de Google Notes (non encore déployé en FR) sur smartphone est là pour permettre à un public le plus large possible d'approuver ou non des résultats.
C'est une évaluation lié aux "quality raters". On note ici 5 niveaux :
À noter que ces documents ont montré que les quality raters n'évaluent les pages qu'en format mobile.
Dans le cadre de test d'évaluation de pertinence, Google propose aux évaluateurs deux versions de pages de résultats pour même requête. Cela permet aux évaluateurs de noter la pertinence relative de chaque SERP. On imagine que cela permet notamment de confirmer la notion de recherche 360 de tangram et la pertinence des widgets de recherche.
On le sait, les tests A/B sont la méthode idéale pour valider en conditions réelles des expérimentations, qu'il s'agisse d'UX ou de choix de résultats. Cela permet de valider avec de vrais utilisateurs et de se rendre rapidement compte ce qui plait ou non. Cela permet notamment de contrebalancer les biais évoqués en IS score.
Les critères d'évaluation mesurés sont :
Les tests sont également en utilisant l'interleaving, qui est un framework de tests affinés dédié aux algorithmes.
Freshness
Fondateur de 410 Gone, passionné de e-commerce, expert Magento et SEO, j'accompagne les professionnels en e-commerce sur leurs choix techniques et Business. Je suis également Président du FePSeM SEOCamp depuis 2021.
BESOIN D'AIDE ?La bonne utilisation des UTM est parfois un peu mystique pour certains... On vous apprend à mieux les comprendre et utiliser en quelques minutes.
Rendez-vous le jeudi 07 décembre à 14h00 pour notre webinar avec Kardynal sur le financement de votre stratégie digitale !
Découvrez les bonnes pratiques Googles Ads à mettre en place à l'occasion du Black Friday !
Téléchargez notre livre blanc SEO !